
 Kgs. Lyngby 30/6 – 2020

1

NOAH Tool User Manual and
Documentation

Output 3.3 of Interreg Baltic Sea Region project NOAH
Protecting Baltic Sea from untreated wastewater spillages during flood events in
urban areas

Authors: Jonas Wied Pedersen, Magnus Bjerrum Johansen, Morten Borup

Technical University of Denmark, Department of Environmental Engineering (DTU Environment),
Urban Water Systems section, 2800 Kgs. Lyngby Denmark.

 Kgs. Lyngby 30/6 – 2020

2

Contents
INTRODUCTION ... 3

ESTIMATING REAL TIME CONTROL SETTINGS .. 3
CALIBRATION AND DATA VALIDATION ... 3
OPEN SOURCE, COLLABORATIVE DEVELOPMENT .. 3

ESTIMATION OF RTC SETTINGS .. 4

Prerequisites ... 4
METHODOLOGY ... 4
USING THE GUI ... 5
ACTUATORS AND SENSORS ... 6

Orifice .. 6
Weir... 7

DEFINING THE OBJECTIVE ... 7
OPTIMIZATION OF REAL TIME CONTROL ... 8

EXAMPLE CASE: ESTIMATING RTC SETTINGS FOR RAKVERE PILOT CASE .. 10

MODEL CALIBRATION .. 12

PREREQUISITES .. 12
CALIBRATION METHODOLOGY .. 13
USING THE GUI ... 14

Preparing the model ... 14
Preparing the data .. 15
Parameter selection .. 16
Calibration period ... 17
Calibration area .. 18
Optimization settings .. 19
Output from running the calibration... 21

CALCULATE MODEL-DATA FIT .. 22
FUNCTIONALITY IN THE PYTHON CODE LIBRARY RELEVANT FOR MODEL CALIBRATION .. 23

EXAMPLE CASE: CALIBRATING SWMM MODEL FOR BRÆNDEKILDE, DENMARK ... 27

BELLINGE CASE: SYSTEM, ACTUATORS AND SENSORS .. 27
CALIBRATION SETUP AND GUI SETTINGS ... 27
RESULTS ... 29

INSTALLATION OF NOAH TOOL .. 31

APPENDIX A: GUI AND RTC FUNCTIONALITY IN THE PYTHON CODE LIBRARY ... 36

PYSWMM_GUI ... 36
GUI_ELEMENTS ... 36
PYSWMM_SIMULATION .. 38
ADDING PARAMETERS TO THE CODE ... 39

 Kgs. Lyngby 30/6 – 2020

3

Introduction
The NOAH Tool is an assisting tool that enables the user to explore the potential in implementing
Real Time Control (RTC) solutions in urban drainage systems based on an existing SWMM model
of the system. The tool can furthermore calibrate a SWMM model based on observations from
the system. The basic functionality of the tool can be used via its Graphical User Interface (GUI)
while more options are available in the tools code repository for the user that is accustomed with
coding in Python.

Estimating Real Time Control settings
To estimate RTC settings, the user has to define what should be controlled (such as a weir, gate or
orifice), what sensor the control is based on, and what the control should try to minimize. The
tool then automatically finds close to optimal control settings based on a limited number of
simulations. The tool is meant to provide the user with a solid idea about how much can be
gained with a specific control setup for a default version of the given type of actuator. The final
minor adjustment or tuning of RTC parameters so that they fit exactly to the specific actuator will
have to be a manual process.

Calibration and data validation
Since the RTC parameters are found using a SWMM model, this model needs to be accurate in
representing the system dynamics. For this reason, the tool includes a model calibration feature
that automates the process of calibrating the SWMM model based on downstream flow or water
level measurements from the drainage system. This is done running a limited number of
simulations in order to ensure that calibration can be performed on large, computationally
expensive real life models.

If the calibration process cannot make the model and observations fit, this can be due to errors in
the overall model structure that need to be fixed, but it can also be due to errors in the
observational data. Furthermore, if a calibrated model suddenly starts to perform worse in terms
of matching the observations this can be due to either a change in the system not included in the
model or a suddenly occurring error related to the sensor data. Therefore calibration and data
validation goes hand in hand, and the NOAH tool can both calibrate a model as well as quantify
the model to data fit for a user defined period which enables model based data validation.

Open source, collaborative development
The NOAH Tool 1.0 is the first version of the tool. In time its functionality will increase as the
university partners of the NOAH project as well as others not connected to the project, add
functionality through the collaborative, open source nature of the code that can be accessed and
improved by anyone using the repository available at https://github.com/mbjjo/NOAH

 Kgs. Lyngby 30/6 – 2020

4

Estimation of RTC settings
The RTC feature in the NOAH Tool helps the user with finding good RTC settings. This is a task that
most often is performed by manual running of numerous model simulations, which besides being
waste of the engineer’s time, also does not ensure that a result close to optimum is obtained. The
NOAH Tool does this automatically meanwhile quantifying the improvement of the system
performance due to the RTC. The real time control is computed as simple rule-based control. If
the water level in a node exceeds a certain level an actuator is activated.

Prerequisites
The only prerequisites for using the tool is a calibrated SWMM model that represent the main
dynamics of the urban drainage system and a rainfall time series that represent the types of
events for which the RTC should improve the performance of the network

Methodology
The estimation procedure is illustrated in Figure 1. It is based on repeated model runs with
different RTC settings. The performance of each model run is quantified in an objective function
based on the scope of the RTC (e.g. reducing overflow). First the method samples the relevant
RTC parameter uniformly within the user defined parameter space. The best performing of these
parameter sets is then fine-tuned using a simplex algorithm.

Figure 1: Overview of the process of estimating RTC settings.

Initial RTC
settings

Uniform
Sampling

SWMM model with
controleable actuator

RTC setting model run

Objective
function

RTC setting model run

RTC setting model run

………….. …………..

Best performing
RTC setting

Estimated RTC
setting

Number of
iterations

Scope of the
RTC

Simplex:
Objective
function

model run

 Kgs. Lyngby 30/6 – 2020

5

Using the GUI
The RTC estimation can be initiated through the GUI of the NOAH Tool. Figure 2 shows the RTC
tab in the tool.

Figure 2: The NOAH Tool GUI with the RTC pane selected.

The Overwrite existing config file check box in the button on the window allows the user to run
simulations without typing in all the required fields in the GUI. If this is checked the data in the
GUI is saved to a new configuration file that is used for the computation. If not, the existing
configuration file that matches the model name is used. This feature allows the user to easily run
similar computations with various changes in the model such as basins with different dimensions.

A folder with the timestamp of the beginning of the computation is created in
NOAH_RTC_Tool\output. (e.g. NOAH_RTC_Tool\output\2020-06-11_10-19-18). This folder
contains the results and plots from the computation.

The model generated both after the calibration and RTC optimization process is saved in the same
folder as the original model.

 Kgs. Lyngby 30/6 – 2020

6

Rain data and other external files must be defined as a Timeseries in SWMM. If this is not the case
(e.g. if rain is defined directly in the Rain gages) a copy of the timeseries must be placed in the \lib
folder.

For more information about the different fields and elements in the GUI, hover the mouse over
the widget and a text with small explanations will appear.

Actuators and sensors
Control always needs at least one sensor and one actuator.

All nodes in a SWMM model can be used as virtual water level sensors since this only require the
depth in the node while all links can be used as virtual flow sensors.

The required actuators are expected to be implemented in the model before the RTC tool is used.
The following is an explanation on how different actuators are applied.

Orifice
An orifice is a structure that can be either open or closed and thus allowing water to pass towards
the downstream part of the system.

The setting that is defined in the interface is the fraction open (i.e. 0 means closed and 1 means
open) and should be in the range between 0 and 1.

Example:

If the depth in the sensor exceeds 0.5 meters the orifice will close. If the depth is below 0.5 the
orifice will be open.

Other settings between 0 and 1 can be applied in order to let smaller amounts of water through
the orifice.

Note that the time that it takes for the orifice to change position should be defined beforehand in
the SWMM model.

 Kgs. Lyngby 30/6 – 2020

7

Weir
Weirs in SWMM can act as moveable weirs where the height of the crest can be controlled
dynamically. The setting that is defined corresponds to the fraction that the crest of the weir is
lowered compared to its highest position.

The height of the weir is then:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + (1 − 𝑋𝑋) ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

 where X is the setting that is inputted in the GUI.

Thus, a setting of 1 means that the weir is fully open (the lowest point) while a setting of 0 means
that the weir is closed (lifted to its maximum height).

Example:

If the depth in the node that is named sensor exceeds 0.5 meters, the weir will be fully open and
else it will be at maximum elevation.

In the example the sensor is located upstream of the weir. This means that a high water level will
lower the weir and let water flow further down in the system.

If the sensor is located downstream of the weir the setting should typically be swapped, such that
a high water level causes the weir to close and prevent water from flowing down in the system.

Other settings between 0 and 1 can be applied. This could be to lift the weir in case of rising water
level but still allow water to flow over the weir when the water level reaches a certain height.

Defining the objective
The scope of the optimization is to minimize either the total volume or the frequency (number of
events) where flooding or CSO occur. This is computed from a selected number of nodes defined
by their node ID.
The node ID’s can be defined in three fields or provided as a list of nodes separated by “,” if more
than three nodes are to be computed. If nodes are typed in the list then the upper three fields will
be ignored.

 Kgs. Lyngby 30/6 – 2020

8

In this case the number of flooding events are to be reduced from node3, node 4 and node5.
Node1 and node2 are not included in the computation.

Depending on the selected optimization target (volume or frequency) the optimized results might
differ. It is therefore recommended to run the optimization for both targets and compare the
results. This will also reveal any conflicts between the two targets that might appear in some
cases.

The Event settings frame is used to define how an event is computed. These are predefined

If CSO’s or flooding occur within the “separation time” they are counted as one event.
If one event lasts longer than “maximum duration” they are counted as several events.
The event definition depends on the model. If the CSO’s are computed as outflow from an outlet,
the “Outflow from CSO structure” should be selected whereas “Flooding above ground” should be
selected if the flooding is computed as flooding from nodes.

Optimization of Real Time Control
The optimization of the real time control is defined in the window with optimization parameters.

The variable that is optimized in Figure 3 is the “activation depth”. This is the depth that should
be measured in the sensor node before the actuator (orifice, weir or pump) reacts and changes its
position.

Optimization is only applied if the “Use Optimization” field is checked. If this is not the case the
simulation will just run with the setup that is defined in the Control rule setup.

 Kgs. Lyngby 30/6 – 2020

9

The optimization is done by a “two-step-optimization” which first makes a certain number of
simulations within the entire parameter space and afterwards runs a simplex algorithm with
starting point as the minimum value from the initial step.

Example:

Figure 3: Settings for the optimization of RTC parameters.

The parameter range in Figure 3 is defined to be between 0 and 3 meters. No setting outside this
range can be found. This should typically be the lowest and highest depth of the sensor node.
8 Simulations are run within this range and afterwards a simplex algorithm is initialized from the
lowest point and runs either 25 iterations or until the algorithm has converged and reached the
minimum value.

A SWMM model with the optimal RTC setting is saved in the same folder as the original model.
Furthermore a text file as well as a plot of the initial step of the optimization is saved in the output
folder.

 Kgs. Lyngby 30/6 – 2020

10

Example case: Estimating RTC settings for Rakvere pilot case
The NOAH Tool was applied at the pilot case of Rakvere. The GUI was used as described below,
see Figure 4.

Figure 4: Setting up the estimation of the RTC settings for the weir controlling the flow from the upstream lake in
Rakvere.

The model was prepared by adding a weir in SWMM. This is the one that is to be activated based
on values from the sensor which is located at the node with ID 22069.

When the water level in node 22069 exceeds a certain depth the weir is set to a setting of 0 (i.e.
maximum elevation). The weir lowers again when the water level drops below this level. A wide
static weir is installed in parallel with the moveable weir to ensure the water level in the lake does
not become too high.

The flooding is monitored from 8 different nodes with ID’s: 22065, 14, 26589, 5619, 27082, 19260,
5832 and 42. The objective of the optimization is to reduce the number of flooding events from
these nodes. Note that one rain event can be counted as several events if it causes flooding in
several nodes.

The parameter range is set to be between 0 and 3 as the water level at the sensor cannot exceed
3 meters. Initially 6 simulations are run within this range, see results in Figure 5.

 Kgs. Lyngby 30/6 – 2020

11

Figure 5: Objective function values for the first step of the optimization. This indicate that the optimum is somewhere
between 0 m and 1.5 m. Hereafter the simplex routine finds the optimum.

It is seen that the lowest number of flooding events is 37. This is reached at an activation depth of
0.5 meters. The simplex now uses this setting as a starting point and evaluates nearby steps and
thus finding the minimum value.
In this case an activation depth of 0.5125 will result in 36 flooding events which is the minimum.

This result means that if the weir is raised up when the sensor depth exceeds 0.51 meters, the
number of flooding events can be reduced.

 Kgs. Lyngby 30/6 – 2020

12

Model Calibration
The NOAH tool allows you to calibrate a SWMM model against in-sewer observations of flow and
water levels. This chapter describes the calibration features available through the NOAH Tool GUI
as well as listing the expanded functionality available through the tools in the Python code
repository.

Prerequisites
The tool requires three inputs to be prepared by the user before a calibration can be performed:

1. A functioning SWMM model

2. In-sewer observation time series of either water level or flow data

3. An observed rainfall time series for the catchment area for the same period as the in-sewer
observations

The output of running the calibration procedure is a new SWMM .inp file, where the selected
parameters have been calibrated against the user-provided data.

 Kgs. Lyngby 30/6 – 2020

13

Calibration Methodology
The automatic calibration is performed by running multiple SWMM model simulations with
different parameters and comparing the results from these simulations with sensor data. The
comparison is done with an objective function, which quantifies the difference between model
and observations. The optimization is divided into two steps: First the overall parameter space is
explored in a cost effective way using Latin Hypercube Sampling1. Hereafter, in an iterative
process the next parameter values to be tested is found by analysing the objective function values
of the previous simulations and in the end the parameter set resulting in the best objective
function value is chosen as the calibrated model. In version 1.0, the latter is done with the
commonly used Nelder-Mead simplex routine2, but this will probably be supplemented in later
version of the tool with a newly developed method that is tailor-made for calibration of urban
drainage models. The procedure is illustrated in Figure 6.

Figure 6: Conceptual overview of the calibration process. The yellow boxes indicate user inputs.

1 Iman, R. L., Helton, J. C., & Campbell, J. E. (1981). An approach to sensitivity analysis of computer models: Part I—
Introduction, input variable selection and preliminary variable assessment. Journal of quality technology, 13(3),
174-183.
Python implementation: https://pythonhosted.org/pyDOE/randomized.html#latin-hypercube [2020-06-30]
2 Gao, F., & Han, L. (2012). Implementing the Nelder-Mead simplex algorithm with adaptive parameters.
Computational Optimization and Applications, 51(1), 259-277.

Initial parameter
value(s)

LHS
Sampling

Parameter ranges to be
explored

Parameter set model run

Observations

Objective
function

Parameter set model run

Parameter set model run

………….. …………..

Best performing
parameter set

Simplex:

Calibrated
parameter set

Number of
simulations

Objective
function

model run

https://pythonhosted.org/pyDOE/randomized.html#latin-hypercube

 Kgs. Lyngby 30/6 – 2020

14

Using the GUI

Preparing the model
Before the calibration tool is used it is important that the user-specified SWMM model is fully
functioning, in the sense that the user should be able to run simulations from the standard
SWMM GUI. It is important to acknowledge that calibration is the LAST step after the modeller
has ensured that the asset data from physical properties of the system has been determined, such
as pipe diameters, invert levels, approximate areas of the various sub-catchments etc. The
parameter values in the user-specified model do not need to be well-defined, but they should be
relatively reasonable from an engineering point of view.

Any additional .dat or .ini files (e.g. rain data, boundary conditions, or hotstart files) that are
needed to run the model must be located in the same folder as the .inp file.

The first step in the calibration procedure is to select the model that needs calibration, see Figure
7.

Figure 7: Selection of the SWMM model that is to be calibrated is done using the same dialog as when selecting model
for RTC (highlighted with a red square).

 Kgs. Lyngby 30/6 – 2020

15

Preparing the data
The current version of the tool is able to calibrate a model against observations from a single
point in the sewer system. This can either be measurements of water levels or flows. The data
needs to be provided as a comma separated file (.csv) with two columns.

• The first column should have the headline “time” and contain time stamps in the format “YYYY-
mm-dd HH:MM:SS” (e.g. 2018-08-01 00:00:00).

• The second column should have the headline “value_no_errors” and contain numeric values.

The units of the data should be the same as the user-specified units in the SWMM model, e.g.
meters for water depths and m3/s for flows.

 Kgs. Lyngby 30/6 – 2020

16

Parameter selection
The current version of the tool is able to calibrate the four main SWMM parameters that relate to
the impervious surfaces and the pipe network:

1. “% Imp”: Imperviousness of the sub-catchments. Affects the magnitude of runoff and peaks
during rain events.

2. “Width”: Width of the overland flow path. This parameter determines how fast the water run of
a sub-catchment.

3. “Dstore”: Depth of the depression storage on the impervious areas (also known as the initial
loss/abstraction in the sub-catchment). This determines how much rainfall that is needed before
runoff happens from impervious areas.

4. “n_pipe”: Manning’s roughness coefficient for the conduits. Determines the capacity of the
pipes and to some extent the velocity of the water in the pipes and thus affects the shape of the
hydrograph from the system.

The user can choose one or more of the four parameters for calibration by ticking of the boxes
next to each parameter, see Figure 8.

Figure 8: Choosing what parameter(s) to calibrate.

 Kgs. Lyngby 30/6 – 2020

17

The calibration needs a user-specified minimum and maximum value for each parameter that
determine the range of values that will be investigated during the calibration routine. The min and
max values are multiplicative factors that are applied to the original parameter values in the
uncalibrated SWMM model. As an example, a min value of 0.5 and a max value of 2 means that
the calibration procedure will search for the best possible parameter value within a range of half
to double the original parameter value.

Calibration period
The period of time that the calibration should take place over is also a user-specified value. Here,
the user chooses a Start time and an End time for the period in the format “yyyy-mm-dd HH:MM”,
see Figure 9.

Figure 9: Setting the calibration period.

 Kgs. Lyngby 30/6 – 2020

18

There is also an option of using an initial period for “warming up” the model before the
calibration starts to quantify model performance with the objective function. This feature starts
the simulation a user-specified number of hours before the specified Start time, which provides
the model with better initial conditions. The user should choose an initial period that is large
enough to “wash out” all effects of the initial conditions in the system. Five hours is given as a
default value for the initial period. It is important that the input data (e.g. rainfall data and other
boundary conditions) is available also for the initial period.

Calibration area
It is often the case that the location of the sensor device that measures the calibration data is not
located at the outlet of the SWMM model. It might therefore not be appropriate to calibrate the
parameters of all parts of the model with data from a single point in the system (especially when
large parts of the model is downstream of the sensor location). The NOAH tool gives the users a
couple of options for choosing which parts of the model that should be calibrated, see Figure 10.

Figure 10: Selecting for what parts of the system the parameters should be changed during the calibration.

• All: All elements in the SWMM model (i.e. all sub-catchments or conduits) are calibrated against
the data.

 Kgs. Lyngby 30/6 – 2020

19

• Upstream: Only the model elements that are upstream of the sensor location are part of the
calibration. Downstream model elements will maintain their original parameter values. This
functionality only works if conduits are drawn from upstream to downstream nodes in the
original SWMM model.

• Custom: This function is not fully implemented yet. The plan is to implement an option so the
user can specify exactly which sub-catchments and conduits that need calibration.

Optimization settings
A calibrated model is not just a calibrated model. The objective function, that is the function that
is used by the calibration routine to decide which parameter set gives the best model
performance when comparing to the observations, does have an influence on the final calibration
result. Therefore the user has to choose between different objective functions, see Figure 11.

Figure 11: Choosing the objective function and setting the optimization settings.

 Kgs. Lyngby 30/6 – 2020

20

Five different objective functions can be used during the calibration:

• Root Mean Squared Error (RMSE)

• Mean Absolute Error (MAE)

• Nash-Sutcliffe Efficiency (NSE, during optimization the routine is minimizing the negative NSE)

• Absolute Relative Peak Error (ARPE)

• User-defined objective function

The first four objective functions are predefined as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
max(𝑀𝑀) −max (𝑂𝑂)

max (𝑂𝑂)
�

Where 𝑀𝑀 is the simulated model output, 𝑂𝑂 is the observed time series, 𝑛𝑛 is the number of time
steps in the observed time series within the simulation period (from Start time to End time), and
𝑂𝑂� is the mean of the observed time series.

The last objective function “User-defined objective function” gives the user the possibility of
defining his only objective function by coding a few lines of Python code. This is done by locating
the Python code file User_defined_objective_function.py and editing it with the appropriate
function. The default content of this file is a mixed objective function that calculates its output
value as an average between the max peak value and the correlation of the time series. Note that
the user defined objective function needs to be increasing for worse match between model and
observations.

 Kgs. Lyngby 30/6 – 2020

21

The user can choose between three different optimization methods for the calibration:

1. LHS (Latin Hypercube Sampling): This method performs an efficient search of the
parameter space with Latin Hypercube Sampling. The method simulates a number of
model runs with different parameter sets that obey the rules of LHS and calculates the
objective function value for each simulation. The parameter set that returns the lowest
objective function value is the final, calibrated parameter set. The user specifies how
many SWMM simulations the optimization method is allowed to perform before it has to
deliver a calibrated parameter set.

2. Simplex: This method uses a standard Nelder-Mead simplex routine as provided in the
“optimize” function of the Python package “Scipy”. The optimization method starts with
the initial parameter set in the SWMM model and progressively searches for new
parameter sets that improve the objective function value. The search strategy is a
standard simplex-style search. The user defines the number of SWMM simulations the
optimization method is allowed to run before it has to return the parameter set that so
far has provided the best objective function value. In case the algorithm converges on a
parameter set with fewer simulations than the user has specified, the routine will simply
end and return the best parameter set. It should be noted that simplex-style
optimizations are sensitive to local minima, which can be an issue for objective functions
with complex response surfaces.

3. Combined: This method runs a user-defined number of LHS simulations before it starts a
simplex routine. The advantage of this is that the initial LHS simulations search the
parameter space globally before the simplex routine is started. This will reduce the risk of
the simplex routine ending in a local minima although it does not guarantee that this
cannot happen. This method is the preferred and default method among the three
options.

Finally, the user should specify the “Output time step” that is needed in the simulation output. An
appropriate choice is to use an output time step that equals the time steps in the observations. If
the observations and simulation do not have the exact same time stamps, the NOAH tool will
linearly interpolate the simulated values to fit the observed time stamps.

Output from running the calibration
To run the calibration simply press the Run calibration button, Figure 12. The output of running
the calibration tool is a new .inp file where the selected parameters have been optimized against
the provided data. This file will be located in the same folder as the original file and have the
name that is specified in the GUI. Plots that show the objective values during the various
simulations as well as convergence of the simplex routine are saved in a folder with the
timestamp of the simulation in NOAH_RTC_Tool\output. (e.g. NOAH_RTC_Tool\output\2020-06-
11_10-19-18).

 Kgs. Lyngby 30/6 – 2020

22

Figure 12: The part of the Model Calibration tab that allows for starting a calibration and saving the calibrated SWMM
file, as well as simply doing a single run and calculating the objective function using the “Calc model-data fit” button.

Calculate model-data fit
It is possible to evaluate the fit between a SWMM simulation and an observed time series. If the
model has previously been calibrated towards a sensor, this function can be used to do integrated
model-data validation. By running this function from time to time with the newest data included,
the user can see if the objective function is getting worse, in which case there is likely to be errors
in either the model or the data. The inputs to the functionality is similar to that of the calibration
routine, see Figure 12.

The user must specify:

1. “Choose model file”.
2. “Start time”, “End time”, and warm-up period settings.
3. Objective function

 Kgs. Lyngby 30/6 – 2020

23

Functionality in the Python code library relevant for model calibration
The Python library includes more functionality than what can be accessed through the GUI. The
following shows a list of python functions and what they do.

Name Description Input Output
Swmm_model_inventory() Load properties

of nodes, links,
subcatchments
and rain gauges
from the SWMM
model into
Python.

• A SWMM .inp file. Four pandas
data frames, one
for each type of
data:

• Nodes
• Links
• Subcatch

ments
• Rain

gauges
Backwards_network_trace
()

Identify model
elements that
are upstream of
a specific node.
Requires that the
links are properly
drawn (in the
flow direction) in
the original
SWMM model.

Loaded model element
properties from
swmm_model_inventory
function).

Three lists of
model element
ID’s for each
type of system
element:

• Nodes
• Links
• Subcatch

ments

Swmm_simulate() Simulate a
SWMM model
within a given
period and
collect model
output for
selected
elements. The
variables that
can be collected
for each element
is:

• Nodes:
Water
depths

• Links:
Flows

• Subcatch
ments:
Runoff

• .inp file
• Start and end time

stamps for simulation
period

• Lists of selected
elements (nodes, links,
subcatchments)

• Desured output time
step given in seconds

• Whether a
hotstart/warm-up
period should be used

• The length of this warm-
up period in hours

Dictionaries with
outputs for all
selected model
elements. If
multiple kinds of
elements are
chosen, there is
one dictionary
for each type
(nodes, links,
subcatchments.

 Kgs. Lyngby 30/6 – 2020

24

Change_model_property() Change almost
any kind of
property in a
SWMM .inp file
(e.g. a parameter
value, pipe
diameter, weir
type, dry
weather flow,
etc.). The user
can choose
whether to
provide a new
value to a model
element, or to
modify the
current value
with a
multiplicative
factor or an
additive factor. A
resulting new
model can then
be saved as a
new .inp file if
desired.

• .inp file
• The “section” of the

model element that
needs to be changed
(see outcommented
code above the function
for options).

• A list of model element
ID’s that needs a
property changed.

• Name of
parameter/property to
be changed.

• Optional: a new
replacement value for
the property.

• Optional: a
multiplicative factor.

• Optional: an additive
factor.

• Optional: Name of path
for a new .inp that can
be created.

A new SWMM
model where the
desired property
has been
changed.

Simulate_objective() Run a SWMM
simulation,
compare with
observed data,
and return an
objective
function value.

• .inp file.
• Simulation start and end

time stamps.
• Selected model

elements (the model
location where the data
has been observed).

• Desired output time
step.

• Whether a
hotstart/warm-up
period should be used.

• The length of this warm-
up period in hours.

• Pandas data frame with
observated data.

• A function that contains
the desired objective
function.

A calculated
objection
function value.

 Kgs. Lyngby 30/6 – 2020

25

Create_new_model() Change multiple
parameter values
in a model by
multiplying a
factor to the
original
parameter
values.

• List of multiplicative
factors for each
parameter that is being
changed.

• .inp file
• Name of path for a new

.inp that is created.
• “Sections” of the

parameters that are
being changed.

• “Names” of the
parameters that are
being changed.

• Number of parameters
that are being changed.

• List of model elements
that needs new
parameters vales
(nodes, links,
subcatchments).

A new .inp file.

Create_runobjective_delet
e_model()

Specify settings
for a model with
changed
parameter
values, and
simulate an
objective
function with this
model.

• All inputs required for
the create_new_model()
function

• All inputs for the
simulate_objective()
function.

An objective
function value.

Generate_run_lhs() Generate
parameter sets
that follow LHS
principles and
run SWMM
simulations with
those sets. The
user can specify
whether results
from all sets or
just the best set
should be
outputted.

• Number of LHS
parameter sets that are
sampled.

• Ranges for all
parameters for
constraining the
sampling space.

• All inputs required for
the
create_runobjective_del
ete_model() function.

Objective
function values
for all tested
parameter sets,
or objective
function value
for just the best
parameter set.

Run_simplex_objective() Run a simplex
routine based on
a user-specified
maximum

• Initial parameter values.
• Path to a temporary

folder where models can
be created and

Objective
function values
for all tested
parameter sets,

 Kgs. Lyngby 30/6 – 2020

26

number of
simulation
iterations. The
user can specify
whether results
from all sets or
just the best set
should be
outputted.

simulated (this folder is
deleted after the
function is finished).

• All inputs to the
create_runobjective_del
ete_model() function.

or objective
function value
for just the best
parameter set.

 Kgs. Lyngby 30/6 – 2020

27

Example case: Calibrating SWMM model for Brændekilde, Denmark
Bellinge case: system, actuators and sensors

An example of calibration setup is given here for the small town of Brændekilde, Denmark. The
town has a combined sewer system, which collects wastewater from local residents and surface
stormwater. At the outlet of the sewer catchment, the water is pumped further downstream
towards the local wastewater treatment plant. There is a combined sewer overflow (CSO)
structure next to the pumping station where wastewater is discharged into the natural
environment during heavy rainfall events. There is a flow control structure immediately upstream
of the pump sump that governs whether water flows to the pumping station or to the CSO
structure. At this point, there is a sensor that measures water levels, and which will be used to
calibrate the model against.

Calibration setup and GUI settings
For this example, a calibration will be performed with one month of water level observations
(March 1-31, 2020). Figure 13 shows a screenshot of the GUI settings for this calibration example.

All four parameters that can be calibrated with the tool are used here. The parameter ranges are
left at the default values except for the “% Imperv”’s minimum value, which is lowered to 0.3 as
the local utility company that operates the sewer system suspects that the imperviousness might
be overestimated in the original model. All model elements will be calibrated, not just the
upstream parts.

The objective function is chosen as RMSE, while the optimization method will use the “Combined”
LHS and Simplex approach. The number of initial LHS simulations is set to 10, while the Simplex

 Kgs. Lyngby 30/6 – 2020

28

routine is allowed to fine tune the parameter values with 130 simulations. The number of simplex
simulations is here deliberately set high with the purpose of illustrating how performance
continually improves during the fine tuning. However, in real cases the number of simplex
simulation can be set much lower while still obtaining a decent fit (see below). Simulating this one
month period with SWMM on a standard HP Elitebook laptop with an i5 processor takes
approximately two minutes. A total of 140 simulations thus means that the full calibration will
take between four to five hours to complete.

The water level data is recorded at one-minute time steps and the “Output time steps” is
therefore set to 60 seconds for the simulations.

Figure 13: A screenshot of the settings for the calibration example.

 Kgs. Lyngby 30/6 – 2020

29

Results
After completion of the calibration routine, two figures are produced. The first figure (Figure 14)
shows the objective function value for all tested parameter sets where the best sets of the initial
LHS screening and the overall best parameter set after the full combined calibration run are
highlighted. From the figure it is visible that the %Imperv parameter has a large effect on the
value of the objective function, while the other parameters are less clearly defined. It is also seen
that the difference between the best LHS parameter set and the best simplex set (130 simulations
later) is rather small, which shows that a few initial simulations by themselves can substantially
improve model performance. The result of the calibration confirmed the utility company’s
suspicion that the imperviousness was overestimated in the original model as the resulting
%Imperv parameter is approximately half the original estimate. The width parameter is increased
by a factor of four leading to a faster response to rainfall, while the initial loss (“S-Imperv” in the
figure) and pipe roughness (“ManningN” in the figure) are close to their original estimates.

Figure 14: All LHS and Simplex simulations for the test case and their resulting RMSE objective function value (y-axis).

The second figure (Figure 15) shows the objective function value as the simplex algorithms
converges towards the final calibrated parameter values. After 25 model simulations, the
algorithm has already identified a parameter set that it very close to the performance of the final
calibrated parameter set. Beyond 50 simulations there is no substantial improvement in the
objective function. Normally, the simplex algorithm has found well-performing parameter sets
within the first 25-30 simulations.

 Kgs. Lyngby 30/6 – 2020

30

Figure 15: RMSE objective function values (y-axis) against the number of simulations in the simplex algorithm.

Figure 16 shows the observed water levels against simulations with the original model and the
calibrated model. Here, it is clearly seen that the original model overestimates the amounts of
water in the system during rainfall events. The calibrated model shows much better agreements
with the observations. In fact, during the largest rain event on March 11th in the figure, the
original model simulates a CSO event in the nearby CSO structure, which the observations show
did not occur in reality. The calibrated model does not make this error.

Figure 16: Observed water levels against the simulated equivalents with the original model and the calibrated model.

 Kgs. Lyngby 30/6 – 2020

31

Installation of NOAH Tool
The following are required before you can install and run the program.

• Installation of Python version 3.7.3 (other versions might work but this one is tested.)
• Python should be set in System environment variables

o This can either be done when installing Python, by checking the box at the bottom.

o Or manually afterwards by following the steps below: (Pictures taken from
https://datatofish.com/add-python-to-windows-path/):

Search for system environment variables from the Windows menu.

Open Environment Variables

https://datatofish.com/add-python-to-windows-path/

 Kgs. Lyngby 30/6 – 2020

32

Select New

 Kgs. Lyngby 30/6 – 2020

33

The following window will appear

In the New User Variable window type in a name for the Variable (e.g Path).
In the “Variable value” field two paths are required.

The first is the path of your python installation:
Locate your Python installation and copy the path. The window should look like below

and insert the copied path as the first variable value.

Put a ; and insert the path again followed by “\Scripts”. This is the second path.
The “Variable value” should look like: *copied_path*;*copied_path*\Scripts as the picture
below.

 Kgs. Lyngby 30/6 – 2020

34

The new variable can now be seen.
Click OK and you are done.

• Clone the NOAH repository to a location on your computer. (https://github.com/mbjjo/NOAH)

To install the program, double click the install batchfile.

To execute the program, double click the Run batchfile.

https://github.com/mbjjo/NOAH

 Kgs. Lyngby 30/6 – 2020

35

All print statements and user massages will be shown in the windows console that appear in the
background. If warnings occur or the program crashes the errors will be shown here.

Note that when the program is running it will be “not responding”. This means that simulations
are running in the background. The status can be seen in the windows console.

 Kgs. Lyngby 30/6 – 2020

36

Appendix A: GUI and RTC functionality in the Python code library
This description applies to the version committed to github on June 30th, 2020. Features added
after this day may not be included in this document

Link:

Pyswmm_GUI
This module contains all widgets of the Graphical User Interface (i.e. the physical and visible
components of the GUI). Run this script to run the NOAH Tool from python.

The structure is the following:

__init__:
Creates the window and settings such as size, title, iconbitmap (the small icon in the top corner)
etc. Also executes all subsequent functions.

create_widgets():
Here all visible components are defined.
First the top part is defined. This includes model selection and logo.
Then the notebook frame (the various tabs) are defined.
To add tabs it should be included here and afterwards content can be written.
The content of each tab is created in the following part. This makes up the majority of the script.

if __name__ == "__main__":
In the very end of the document
Execute the program by starting the mainloop.

Gui_elements
This module contains all functions that are not visible in the GUI and not related to the actual
computation of the simulations.

Run():
This is executed when the Run button is activated. Either the configuration file will be written, or
the simulation will be run with the existing configuration file.

Write_config():
Write all parameters that are given in the GUI to a configuration file with the same name as the
model. This file is saved in \NOAH_RTC_Tool\config\saved_configs and can be edited with any text
editor. If Overwrite existing configuration file is not checked the simulation will run with the most
recent version of this file and most input in the GUI is ignored.

If the save config button is pushed the configuration file is written without running the simulation.

Parameters():
This class contain all parameters that are used before the actual computation. This includes
parameters that defines what kind of simulations that are run, that are shown in the GUI or
changes the appearance of the GUI.

 Kgs. Lyngby 30/6 – 2020

37

Also, parameters that are defined via radio buttons or checkboxes needs to be defined here
because these set an existing variable to a given value or string.

Read config parameters():
Reads the parameters from the corresponding configuration file and saves them to be used in the
Python code.

Calibrate_with_config():
Wrapper function for the Calibrate() function. Loads the configuration file.

Calibrate():
Computes all functions related to the calibration tab with the input specified in the GUI.

The functions that are used here are the ones written in noah_calibration_tools.py and
model_structure_analysis.py.

Objective functions for calibration:
Four redefined objective functions are defined here.

This includes Root Mean Square Error, Nash Sutcliffe Efficiency, Mean Annual Error, and absolute
relative peak error.

Tooltip/create_Tooltip():
Creates a small text that appears when the cursor is above a widget. Useful when explanations
are required.

Small functions:
A range of small functions that are used when changing states in the GUI based on input to the
GUI.
These are typically specific and only used on a few widgets each.

OpenFile():
Opens a dialog that allow the user to choose a SWMM model.

Select_obs():
Opens a dialog that allow the user to choose the data for the calibration.

User_msg():
The function is activated every time a simulation is run. Gives useful information about status of
simulation, computation time etc.

Results_plot():
Makes a plot with some data depending on the input.
Also saves the plot as a .png in the output folder.

First_step_optimization_plot():
Creates a plot of the first step of the optimization. Calls Reults_plot().

NB. The plots for the results are in GUI_emelents.py while the text is in the Optimizer class in
pyswmm_Simulation.py.

 Kgs. Lyngby 30/6 – 2020

38

The functions related to the results are not very intuitively structured. Ideally a class is created
with all functions related to the results so that these are streamlined and easier to edit. This is
part of the future work.

Pyswmm_Simulation
This module contains all code that is related to the computation of SWMM models and processing
of the results.

Optimizer:
This class contains all functions related to the optimization of the RTC.
All following functions are methods within this class.

Init():
Initializes the class and parameters required before the optimization can begin. This includes
creating an output directory for the results and choosing the correct optimizer.

read_config():
This method reads the parameters from the most recent configuration file with the same name as
the model.

The try/except ValueError: clause is only applied where the type is required to be float. This
ensures that spaces can be left blank without causing an error. However, if the parameter is
needed for the computation the error occurs at a later stage. This can be troublesome if it for
instance occur after the simulation when the results are to be written since this will cause loss of
results.

A way of validating the configuration file and checking that all required parameters are correct
should be implemented in the future.

write_SWMM_controls(x,filename):
The SWMM file is copied with the filename as suffix and controls are inserted before simulation.
The setting (X) is what is being optimized.

Redefine_Timeseries():
This method changes the Timeseries in the SWMM model to the correct directory since it would
else require that all external files are in the lib directory.

Two_step_optimizer():
This is the actual optimizer. It contains two parts:

Part 1 is an initial screening of the parameter space defined by input in the Optimization tab in the
GUI.
This is used to save time in the optimization since the starting point is chosen more accurate.
Also, this part allows the user to easily get an overview of whether RTC shows a potential or not.

 Kgs. Lyngby 30/6 – 2020

39

Part 2 is the “finetuning” of the optimization setting. It begins at the lowest point of the screening
and uses a build in python optimizer to find the lowest point. This typically requires more
simulations and computation time.

Part 2 will only be computed if the “Maximum simplex simulations” is greater than 0.

simulation(x):
This method computes each simulation. The input parameter x is the one that is optimized in the
Two-step-optimizer and that is to be determined. If optimization is not applied the activation
depth from the GUI is used.

Objective functions:
The result processing that returns the objective value is computed in these functions.

This is either number of events or volume either from CSO structures or flooding

write_optimal_result():
This writes a text file that is shown after the optimization. As mentioned, the structure of the
results is not intuitive and should be improved.

Adding parameters to the code
When new parameters are to be added to the python code the following steps must be done.

o Add the visible widgets where the parameters must be typed in in pyswmm_GUI.py. (E.g. entry,
radiobutton, Checkbutton etc.)

o Add the parameter in the write_config() function in GUI_elements.py. This ensures that the
configuration file contains the parameter.

o Add the parameter in the read_config() function in the Optimizer class in
pyswmm_Simulation.py and in the Read_Config_Parameters class in GUI_elements.py.
This ensures that the parameter can be used in the simulation.

o Add the parameter to the parameters class in GUI_elements.py. Only necessary if the parameter
is used before the actual computation. I.e. if it defines what kind of simulation that should be
run, if it is shown somewhere in the GUI or if it changes the appearance of the GUI. (Examples
are model name, model directory, whether optimization is applied.)

o Add the parameter in the actual computation in pyswmm_Simulation.py.

	Introduction
	Estimating Real Time Control settings
	Calibration and data validation
	Open source, collaborative development

	Estimation of RTC settings
	Prerequisites
	Methodology
	Using the GUI
	Actuators and sensors
	Orifice
	Weir

	Defining the objective
	Optimization of Real Time Control

	Example case: Estimating RTC settings for Rakvere pilot case
	Model Calibration
	Prerequisites
	Calibration Methodology
	Using the GUI
	Preparing the model
	Preparing the data
	Parameter selection
	Calibration period
	Calibration area
	Optimization settings
	Output from running the calibration

	Calculate model-data fit
	Functionality in the Python code library relevant for model calibration

	Example case: Calibrating SWMM model for Brændekilde, Denmark
	Bellinge case: system, actuators and sensors
	Calibration setup and GUI settings
	Results

	Installation of NOAH Tool
	Appendix A: GUI and RTC functionality in the Python code library
	Pyswmm_GUI
	__init__:
	create_widgets():
	if __name__ == "__main__":

	Gui_elements
	Run():
	Write_config():
	Parameters():
	Read config parameters():
	Calibrate_with_config():
	Calibrate():
	Objective functions for calibration:
	Tooltip/create_Tooltip():
	Small functions:
	OpenFile():
	Select_obs():
	User_msg():
	Results_plot():
	First_step_optimization_plot():

	Pyswmm_Simulation
	Optimizer:
	Init():
	read_config():
	write_SWMM_controls(x,filename):
	Redefine_Timeseries():
	Two_step_optimizer():
	simulation(x):
	Objective functions:
	write_optimal_result():

	Adding parameters to the code

