CB845 CBSmallPorts

Energetic small ports in Central Baltic region

Energy efficiency solutions for small ports

Petri Lähde SAMK

<u>Contents</u>

Energy measurements Energy saving methods Solar energy Heat pumps Automation Wind power

CBSmallPorts project investments Project fairs

Key point no 1. Measure

Start following the consumption

Electricity, Water, Oil, District heating etc. Make calendar notifications so you don't forget Use graphs to make it simple to understand Find out existing meters and how and where to read them Make it easy to access the accounts and data. Add more meters if necessary

Too many function behind one meter makes it hard to find problems

Reading the measurements 1/3

Example measurements from single family house.

Reading the measurements 2/3

Reading the measurements 3/3

European Regional Development Fund

Don't assume, check and find out

Check and mark up system settings

Timers and thermostats for heating, cooling, lighting and ventilation Actual temperatures

Search known events from measurement data and find anomalies Find out what devices consume the most and when Find out if consumption can be reduced technically or is it user based Try to educate, not patronize From the field:

Ship yard temperature higher than thought. Saving potential over 50 000€/a

Meat processing plant was missing heat recovery units from few ventilation units.

Things to do now

Check you energy purchase agreement

At this point you might save a lot by checking prices often Check that there are no extra heating that is not necessarily needed Adjust the floor temperatures of bathrooms and similar Make sure ventilation systems have clean filters **Dirty filters increase power consumption and reduce air quality** Make sure that refrigerators and coolers have room to breath and they are clean **Check for leaks in water piping especially on piers Change to LED lights, payback time is now very short**

Things to do next

Insulate hot water and heating piping

Check water flows in faucets and change to low flow water fittings

Find out about

Solar Heat pumps Wind power Automation

Renovating the buildings to more energy efficient

Compair results

European commission "Best Environmental Management Practice in THE TOURISM SECTOR" Gives Guidelines for energy consumption and examples

Goal is maximum of 6 kWh/guest-night 2 kWh/ guest-night is very good Table 9.14: Some relevant indicators of environmental performance for campsites

Aspect	Indicator
Space heating energy consumption	kWh/m ² yr
	kWh/guest-night
Water heating energy consumption	kWh/guest-night
Electricity consumption	kWh/guest-night
Total energy consumption	kWh/guest-night
Total renewable energy generation	kWh/guest-night
Share renewable energy generation	%
Carbon footprint	kg CO ₂ /guest-night

 Table: Best Environmental Management Practise in the Tourism Sector p.8

Solar energy

Small ports consumption is mainly in summer So is solar energy production – Great fit! Daily usage should be studied to find correct system size Todays prices and uncertainty prefers large panel systems

Systems can be split into many roofs

South-East orientation for morning production South-West for evening

Single roof systems usually a bit cheaper

Picture: Modified of figure from Teemu Heikkinen

Basic On-Grid PV-system

Other system types

Optimizer system

Every panel has its own controller. Shading has reduced effect Broken panels don't affect the system Single panel monitoring

Hybrid inverters and batteries

Has PV inverter, grid- and battery connections. Size usually 5-15 kWh, easy to scale up External batteries are often modular.

Profitability determined case by case

Kostal Piko inverter with external battery

Investments on energy efficiency

Heat pumps

Air to air (split units) are great for space heating and cooling

Air to water heat pump if there is showers and saunas or water circulating space heating

- Exhaust air heat pump doesn't work in winter if inside temperature is kept low
- Ground source heat pump is too large investment if usage in winter is low Automation

For new buildings simple movement sensor lighting is cheaper than installing light switches Present detection to lower heating and cooling when rooms are not used

Wind power

Small windmills are good option for high wind areas Relatively short pole and small wings need high winds Maximum production is achieved with around 12 m/s winds Production roughly 1500kWh/a per installed kilowatt Produces also in night time Usually best production when solar has less production

Expensive

Eye sore

Needs maintenance

Aventa AV-7 6,2kW Yearly production around 9300kWh

Picture: Klaus Rockenbauer, www.flickr.com/rockenbauer, Oberhelfenschwil-Switzerland

Windpower power curves

Windspot 7.5kW (height=12/14/18m diameter=6,3m)

Iskra AT5-1 5kW (h=9/12/15m d=5,4m)

Aventa AV-7 6,2kW (h=18m d=12,8m)

Greenstorm GS 21 S 60kW (h=30/36m d=22,3m)

Power curve

Reducing guest consumption

Consider metering all Electric hook up points

Fixed fee increases electricity consumption

Consumption based billing reduces consumption (be ready for electric cars and boats)

Inform people about saving water

Use water saving fixtures

Investments WP I1-7 (period 5)

Project partner	Port	The target of the investment	Modified (original) budget, €
University of Turku (WP I1)	Seili	Service premises renovation (two saunas + optimization of the energy management system, Optiwatti)	46 870€ (33 000€)
Airiston Matkailukeskus Oy (WP I2)	Airisto Strand	floating piers x 2, solar power plant	169 100€ (159 500€)
South-Eastern Finland University of Applied Sciences (XAMK) (WP I3)	Keihässalmi Sapokka Tervasaari	Modernize the power line (from air to underground) Solar power plant, led light post, led area lighting Guest harbour area led lighting	81 000€ (77 000€)
Bläse Kalkbruk (WP I5)	Bläse	Solar power plant, electricity / water / light to piers, pier maintenance, septic waste pumpout station	107 200 €
Municipality of Söderhamn (WP I4)	Klacksörarna	Solar power plant x 2 (off-grid) and lighting Fresh (drinking) water well and pump (manual)	29 949€ (30 049€)
MTÜ Väikesadamate Kompetentsikeskus (NGO Small Ports Competence Center) (WP I6)	Dirhami Lennusadam Lõunaranna Roograhu	Floating piers, solar power plant LED lights & service posts to piers Wind generator Solar power plant 33kW	139 687€ (321 187€)
Foundation Hiiumaa Harbors (WP I7)	Kärdla Orjaku Soru	Smart lighting Smart lighting & service posts Smart lighting & service posts	42 000 €

Kotkan meripäivät

27. - 30.7.2022

Uiva boat fair

18. - 21.8.2022

Thank You

Petri Lähde

8/2022

